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ABSTRACT

The subglacial topography of the Earth’s ice sheets is a crit-
ical input to models of the evolution of ice sheets and sea
level rise. Direct measurements of ice thickness, however, are
sparse, necessitating techniques for interpolating these mea-
surements. One class of interpolation methods enforces phys-
ical constraints to transform the problem into an inversion. A
challenge with these approaches is that multiple unknown pa-
rameters must be solved for simultaneously. We introduce
a new numerical approach to solving for mass conservation-
constrained ice thickness maps. This technique, based on a
physics-informed neural network, allows for the flexible in-
corporation of a range of soft constraints. In the future, this
could enable simultaneous estimation of ice velocity, bed to-
pography, and sliding parameters.

Index Terms— interpolation, ice-penetrating radar, physics-

informed neural networks

1. INTRODUCTION

One of the fundamental challenges of glaciology is that it is
difficult to observe processes and conditions occurring kilo-
meters below the ice surface, but understanding such subsur-
face processes is critical to projecting the evolution of glaciers
and ice sheets. Detailed subsurface measurements can be
made at specific locations through labor-intensive field work
to help understand the physical processes at play, but mod-
elling entire glaciers almost always relies on inversions to es-
timate the subsurface conditions from surface measurements,
sometimes with spatially sparse subsurface measurements.

In practice, conditions under the ice surface are described
by multiple inter-related phenomena and characteristics. In-
versions for a particular parameter (for instance topography,
basal friction, or velocity) must make assumptions about
other parameters to avoid making the problem hopelessly
under-determined.

As ice sheet models become more sophisticated and our
understanding of ice dynamics grows, it is increasingly im-
portant to be able to simultaneously invert for multiple param-
eters, while placing physically-based constraints on different
dimensions of the problem.

As an initial step towards this approach, we propose
a machine learning-based method for mass conservation-
constrained subglacial topography inversion that allows for
flexibly combining physical constraints and regularizations.

In Section 2, we review mass conservation-constrained ice
thickness interpolation methods. We then demonstrate our
proposed machine learning approach to this problem in Sec-
tion 3. Section 4 discusses the extension of this method to the
two-dimensional case and the introduction of simultaneous
constraints on ice thickness and velocity. Finally, we discuss
the potential we see in this approach in Section 5.

2. MASS CONSERVATION ICE THICKNESS
INTERPOLATION

Maps of ice thickness over Earth’s ice sheets are key inputs
into models used to predict the contribution of these ice sheets
to sea level rise. While accurate surface elevation measure-
ments are widely available from satellite date, measurements
of the topography below ice sheets are typically derived from
airborne radar sounders. These instruments use the two-way
travel time of radio waves through the ice to measure a profile
of ice thickness along the flight path. As a result of the cost
and logistical complexity of this process, ice thickness mea-
surements are sparse in comparison to surface measurements.
Maps of ice thickness must be made by interpolating between
these sparse lines of measurements.

Kriging interpolation has been widely used to produce
these maps [1], however Kriging interpolations produce maps
that do not satisfy the conservation of mass when account-
ing for reasonable bounds on the ice flow velocity [2]. More
recently, mass conservation interpolation methods have been
introduced for fast-flowing regions of ice sheets [3][4]. This
method is based on enforcing the condition that mass is con-
served at every point given an estimated flow velocity. This
constraint can be expressed in a two-dimensional form by us-
ing a depth-averaged ice velocity vector v:

V- (hD) =a (1)

Here h is the ice thickness and & is the apparent mass bal-
ance due to accumulation, ablation, and melting from the sur-



face and bed. We make the approximation throughout this pa-
per that ice has a constant density. Although depth-averaged
ice velocity cannot easily be measured, surface velocity is
available from satellite-born InNSAR measurements [5] and
can be used as a proxy for depth-averaged velocity.

Combining Eq. 1 with constraints on h where radar
sounder ice thickness data exists has been effectively used to
interpolate ice thickness in fast-flowing (e.g. >50 m/year)
areas of ice sheets [4].

3. METHOD OVERVIEW

We apply a physics-informed neural network (PINN) [6]
to predicting ice thickness and depth-averaged velocity as
a function of one- or two-dimensional spatial coordinates.
The feed-forward network’s only input is a spatial coordi-
nate and the only outputs are the predicted ice thickness and
depth-averaged velocity vector at that point. Using automatic
differentiation, we evaluate a physics-based loss function that
penalizes deviations from Eq. 1 (see Section 4.2). We add
additional loss terms that penalize differences between the
predicted values and available measurements.

Among other advantages, our approach is entirely mesh-
free and does not rely upon finite differences to compute the
derivatives. As such, the network may be trained on data with-
out making any decisions about mesh resolution and without
the need to grid or otherwise interpolate the input data. Once
trained, the network may be queried at any point of interest
within the training domain. As a result, there is no need to
select an output grid resolution.

As an illustrative example, we begin with a synthetic 1D
(streamline) model. We assume that the apparent mass bal-
ance is zero throughout the domain. With this simplification,
conservation of mass in one dimension simplifies to a con-
stant product of depth-averaged velocity and ice thickness:

d
I (ho) =0

In practice, measurements are only available at specific
locations. Points on the domain where velocity or thickness
measurements are provided to the network are marked with
dots in Figure 1. Unless a measurement exists at a location,
the value is not available to the network.

Our interpolation network is trained using the sum of
three categories of loss functions: radar data fit, velocity
data fit, and mass conservation. The radar and velocity data
fit terms rewards the predicted values for being consistent
with measurements where they are available. The mass con-
servation term minimizes non-physical implied creation or
destruction of mass that can occur in other interpolation
schemes. Each term can be weighted by a factor. For the 1D
case, each term is given equal weight.

Figure 1 shows the results of the network’s interpolation
with and without the mass conservation loss term. Without
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Fig. 1. (a) PINN-based interpolation results incorporating a
conservation of mass constraint (b) Neural network interpola-
tion without physics-based constraints

the mass conservation loss term, the network produces some-
what arbitrary ice thickness predictions in the gap between
dense measurements. Even in the areas with dense measure-
ments available, there are some sharp corners and other arti-
facts visible between data points (see red zoom rectangles in
the figure). Introducing the mass conservation loss produces
an interpolation result that is smoother in the dense regions
and tracks the true thickness relatively well in the area with-
out ice thickness data.

4. APPLICATION TO BYRD GLACIER

While illustrative, the one-dimensional case without noise is
a trivial problem. For a more interesting two-dimensional ex-
ample, we apply our method to a section of Byrd Glacier. We
use radar data from surveys conducted in 2011 and 2017 by
the University of Kansas [7] and between 2009 and 2012 by
the University of Texas at Austin [8][9]. We use the MEa-
SURE:s dataset for surface velocity measurements [5].

4.1. Network architecture and training

The interpolation network is a feed-forward fully connected
neural network with 5 hidden layers of width 1000 and hyper-
bolic tangent activation functions. As in the one-dimensional
case, the input is a spatial coordinate, now in two dimensions.
For the purposes of the velocity loss functions described in
Section 4.3, the network outputs the predicted ice thickness,
the components of the predicted depth-averaged velocity vec-
tor, and the interpolated components of the surface velocity.
This last output is necessary to provide a smooth interpolation
of the surface velocity measurements. The network is trained
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Fig. 2. Estimated depth-averaged velocities (top row) and
differences between the depth-averaged and surface velocity
(bottom row) for the two velocity loss functions considered

for 100 epochs using the Adam optimizer with a learning rate
of 0.0002, 81 = 0.9, and 52 = 0.99.

The training set includes every point where a surface ve-
locity or radar ice thickness measurement is available. In ad-
dition, the training set includes 500,000 random points sam-
pled uniformly from the entire domain. While radar and ve-
locity data misfit loss functions can only be evaluated at the
points where those measurements are available, the mass con-
servation loss term and the velocity difference smoothing loss
term (see Section 4.3) can be evaluated at any point. The in-
clusion of these randomly sampled points helps to ensure that
these non-data terms are applied across the entire domain, not
just where measurements exist.

Radar data constraints are enforced by a mean squared
error loss between predicted thickness and measurements.
Other components of the loss function are described below.

4.2. Mass conservation loss

The physics-informed loss function leverages automatic dif-
ferentiation to compute the spatial derivatives of the predicted
depth-averaged velocity and ice thickness. The loss term is
the mean squared residual of Eq. 1.

For the purposes of the results shown in this paper, we
assume the apparent mass balance a is zero throughout the
domain but note that incorporating non-zero apparent mass
balance into the proposed method is straight-forward.

4.3. Velocity data fit and regularization loss functions

Velocity data constraints are complicated by the difference
between measured surface velocities and the depth-averaged
velocities in Eq. 1. The surface velocity represents the sum
of velocity due to the ice sliding along the bed and internal
deformation of the ice, which generally produces a velocity
profile which decreases with depth [10].
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Fig. 3. Input radar data (a) and surface velocity (b) for a sec-
tion of Byrd glacier (red square in (d)) used to produce the
interpolated ice thickness map in (c)

We compare two options for the velocity loss functions.
A straight-forward option is to allow fixed, symmetric error
bounds around the surface velocity measurement. This is im-
plemented in our method by penalizing the square error out-
side of the fixed bounds on ¥, and v,,.

This approach may produce physically-implausible re-
sults for a few reasons. First, in general, the depth-averaged
velocity cannot exceed the surface velocity. Second, allowing
a wide range of velocities at each point can lead to unrealistic
spatial patterns. Surface and depth-averaged velocities are
strongly correlated, so it would be unlikely to see a sharp
change in the difference between surface and depth-averaged
velocity. Finally, while the magnitude of the velocity may
vary significantly with depth, the direction of the velocity
vector would not be expected to change much.

An alternative formulation of this loss function is to sep-
arate out loss functions on the direction and magnitude of the
depth-averaged velocity vectors. We also introduce asym-
metric error bounds, allowing the magnitude of the depth-
averaged velocity to be up to 50 m/year less than the surface
velocity but allowing no additional error above the surface ve-
locity magnitude. Our loss formulation penalizes the square
error outside of this range of magnitudes.

Finally, we introduce a smoothing term that penalizes the
mean square of the derivatives of the difference between the
surface and depth-averaged velocity. This regularization term
allows for sharp edges in depth-averaged velocity only where
that edge is reflected in the surface velocity.

Figure 2 compares the predicted depth-averaged velocity
using simple box constraints with the result using the latter
set of loss functions described here.
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Fig. 4. Comparison between this paper’s method, BedMa-
chine Antarctica, and BedMap2 interpolated ice thickness
maps. White outline shows the detail region in Figure 5.

4.4. Results

Figure 3 shows the selected domain, input surface velocity
data, input radar data, and the resulting interpolated ice thick-
ness map. Figure 4 compares our results to ice thickness maps
from BedMachine Antarctica [4] and BedMap2 [11]. Our re-
sults show strong similarity to BedMachine Antarctica, as ex-
pected due to the closely-related methods.

This interpolation problem is highly under-constrained,
so the choice of regularization terms is important. Figure
5 shows a comparison between our results and BedMachine
Antarctica in a small part of the fast-flowing trough with the
error between the interpolated result and the radar data over-
laid. In this region, our results have a mean absolute error
from the radar data of 70 meters, versus 131 meters for Bed-
Machine Antarctica. The extent of this difference motivates
our interest in flexibly incorporating geophysically-realistic
regularization terms such as velocity difference smoothing.

5. DISCUSSION

We have demonstrated the application of an alternative nu-
merical method for solving PDE-constrained interpolation
problems to ice thickness interpolation. Our purpose is not to
propose an alternative ice thickness map for Byrd Glacier but
rather to introduce this method and its potential advantages.

Our proposed method offers flexibility in incorporating
multiple types of physical constraints and a variety of types
of data collected at the boundaries or throughout the domain.
We have shown here that this flexibility allows for adding reg-
ularization terms that produce more realistic estimated depth-
average velocity maps. In future work, we hope to demon-
strate that this flexibility can be leveraged to incorporate ad-
ditional physical terms into the interpolation, producing re-
sults which more accurately capture the multiple physical pro-
cesses simultaneous occurring below the ice surface. We fur-
ther believe that this approach can serve as a stepping stone
for new methods in uncertainty quantification that take into
account the coupling of multiple physical processes.

Source code to reproduce our methods is available at
github.com/thomasteisberg/igarss2021
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Fig. 5. In this enlarged comparison, the overlaid lines indicate
locations of radar data used in this work (not necessarily the
same as in [4]) with red indicating the predicted thickness
exceeds the radar thickness.
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